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 

Abstract—This paper presents a mathematical method for analysis 

of reliability and associated cost regarding electrical power grids 

and similar systems. The reliability analysis is based on Markov 

models established by means of unit models, which is an efficient 

method for analysis of large systems. General principles 

concerning application of the method are presented and illustrated 

by an example from a local power grid in Norway. 

 Index Terms—Reliability analysis, Markov models, Power 

systems, Economic models 

I. INTRODUCTION 

In recent years the increasing economic requirements 

concerning electric power make it important to identify and 

document the reliability for power systems and the associated 

expected economic consequences. This can be done using 

reliability analysis combined with power flow models and 

economic models. Typical strategies that can be analyzed 

include operation, maintenance and investments.  

The probability analysis to be applied is based on a 

mathematical method that composes Markov models by means 

of unit models [1], [2]. This method makes analysis of large 

systems possible without affecting the degree of details.  

The basic theory used in development of the method is 

established on the general Markov probability theory [3], [4] 

and the excellent theory concerning power systems in [5]. 

The main purpose of the project that constitutes the basis for 

this paper was to demonstrate that Markov models could be 

used in calculation of practical power system reliability. 

II. ELECTRICAL POWER TRANSMISSION MODELS 

A. Balance equations and cost function 

Figure 1 shows a typical power transmission network. This 

network will be used in the analysis. Branch 1, 2 and 3 

represents power lines with generators, branch 4 a transformer 

and branch 5 a power line. The branch capacity limitations are 

shown in table 1. This example is a real power grid at the West 

Coast of Norway. 

The unit models are shown in table 2. The total number of 

unit models is 17, 10 models with 3 states and 7 models with 2 

states. The states are: 
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Power transmission 

{Functioning, Temporary failure, Permanent failure} 

Protection 

 {Functioning, Failed, Erroneous operation} 

Auto re-closing and common mode power supply 

{Functioning, Failed} 

 
 

Fig. 1. Typical power transmission network. 

 

Branch Description Maximal power flow 
[MW] 

1 Line 1  68 

2 Line 2 82 

3 Line 3 10 

4 Transformer 132/22 kV 25 

5 Load point line 22 

 
Table 1. Branch capacity limitations. 

 

Unit models Branch no. 

Component 
No. of 

states 
1 2 3 4 5 

Power transmission 3 x x x x x 

Protection  3 x x x x x 

Auto re-closing 2 x x    

Common mode power supply 2 x x x x x 

 
Table 2. Unit models used in the branches. 

 

The transmission capability in the network is restricted by the 

capacity limits. As a result the network will have several 

function levels depending on the network failure status, the 

power flow limitations, and the demand. 

Fictive generators injecting power at the load nodes can be 

used to model power not delivered. By giving these generators 

extremely high production cost, they will only be in production 

if the real power supply to the load nodes is in a shortage 

situation. 

The power balance equations and the cost function can be 

formulated as: 
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where  

MG  : Network structure matrix for generator branches 

MT : Network structure matrix for transmission 

  branches 

MF  : Network structure matrix for fictive generators 

PG  : Generated power [kW] 

PT  : Transmitted power [kW] 

PF   : Fictive power generation [kW] 

PD  : Power demand [kW] 

J   : Operation cost [NOK] 

cG   : Specific generation cost [NOK/kW∙h] 

cT   : Specific transmission cost [NOK/kW∙h] 

cF   : Specific fictive generation cost [NOK/kW∙h]. 

 

The elements in the structure matrix are: 

  

1 if branch no. i goes to node j

1 if branch no. i goes from node j

0 otherwhise 

ijM




 



  

The power balance for the network in figure 1 is 
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The power flow P6  is a fictive generator delivering power to 

node no. 3. 

B. Transmission limitations  

The transmission limitations in the different branches can be 

described by: 

 

  min max P P P                (4) 

where 

 minP   : Lower power limit vector, normally 0 [kW] 

 maxP   : Upper power limit vector[kW]. 

 

C. Branch failures  

Examples of branch failures are: 

 Branch failure caused by independent failure in the 

components. 

 Branch failure caused by common mode failure, 

which results in several component failures at the 

same time.  

 Branch failure caused by an abnormal state in the 

surroundings like lightning or bad weather. 

In addition, demand exceeding the delivery capacity may 

result in failure. 

A branch having a failure has a reduced ability or is not able 

to transport power. This situation can be modeled by 

  max, max f ,i iP P                 (5) 

where 

 max,iP   : Maximal power limit in branch no. i [kW] 

max f ,iP  : Maximal power limit in branch no. i in case of  

  failure [kW]. 

The power limit in case of failure is normally
max f , 0i P . 

D. Calculation of power flow and power shortage 

The power flow and power shortage is calculated by 

minimizing the cost function, equation (2), subject to the 

power flow balance, equation (1), the constraints defined by 

the power limitations, equation (4), and the branch failure 

limitations, equation (5). A power shortage has occurred if the 

fictive power 0FP  . 

III. BASIC PROBABILITY THEORY 

A. The Markov model 

The Markov model is a general method to describe the 

probability that a system is in a function state defined by the 

function state vectorξ . The model has the following form [3], 

[4]. 

p Ap                 (6) 

where 

p : Probability vector describing the probability to 

  stay in the function states ξ  

p   : Rate of change of p [1/year] 

A  : Transition rate matrix [1/year]. 

An additional requirement to the model is 1p . 

Dynamic solution of the differential equation (6) requires a 

starting value for the probability vector p. The stationary 

solution is independent of the starting value. 

The residence times and departure frequencies for the 

different states are [3], [4]: 

 

  
1

diag


θ A                 (7) 

   
1

diag diag


 v θ p A p           (8) 

where 

θ   : Residence time vector [year] 

v   : Departure frequency vector [1/year]. 

The residence time is the mean duration time spent in a state 

and the departure frequency is the expected number of 

departures from the state each year. 

B. Unit models 

Complex systems may have a large number of unit 

components. The reliability models describing these units shall 

be called unit models. The unit models are assumed to have 

function state vectors jξ  and state probability vectors defined 

by the Markov models 
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j j jp A p                 (9) 

The index j is the model identification. The unit models should 

generally have low dimension and be easy to define. 

C. Composite models 

Assume that the probability model for the system composed of 

the unit components, having function state vector ξ , is defined 

by the Markov model (6). This composite model generally has 

a very large dimension, which makes the transition rate matrix 

impossible to establish, and the Markov equation impossible to 

solve. An alternative method to calculate the probability 

variables is the following formal functions: 

 1 2, ,    ξ              (10) 

   1 2, ,p  p p p p              (11) 

   1 2, ,A  A A A A             (12) 

where 

 ξ   : Composite function state vector 

 p   : Composite probability vector 

 A  : Composite transition rate matrix  

 
j  : Function state vector for unit model no. j 

jp  : Probability vector for unit model no. j 

jA   : Transition rate matrix for unit model no. j 

   : Number of unit models. 

The function  p  is based on Kronecker products and 

 A  on Kronecker sums [6], [7]. 

The function    represents a combination of the unit 

model function states. This is illustrated in the following 

example. 

Assume a system consisting of two unit models with the 

function state vectors 

1,1 2,1

1 2

1,2 2,2

;
 

 

   
    
   

ξ ξ              (13) 

A composite function state vector is defined by 

1,1 2,1

1,1 2,2

2,1 2,1

2,1 2,2

 

 

 

 

 
 

 
  

 
  

ξ                 (14) 

where is the logical and operator. However, for calculation 

purposes it is more convenient to operate with the function 

state index matrix   defined by 

1 2

1 1
;

2 2

   
      

   
             (15) 

The composite function state index matrix is 

 

1 1

1 2

2 1

2 2

 
 
  
 
 
 

                (16) 

In general the following relation can be defined 

 1 2, ,                  (17) 

where 

       : Function state index matrix for the composite 

  model 

j      : Function state index matrix for the unit model no. j 

   : A function that generates the function state index 

matrix. 

A compact formulation of the composite functions comprising 

equation (10),(11),(12) and (17) is 

     
1

, , , , ,j j i j  
 ξ p A ξ p A          (18) 

D. Aggregated models 

High dimension function state and probability vectors are 

difficult to interpret. More insight is obtained by aggregation. 

Typical aggregated function states are: 

 The system is functioning 

 The system has failed. 

Aggregation of the probability vector can be defined by 

   
a p Dp                 (19) 

where 

ap   : Aggregated probability vector 

p    : Composite probability vector 

D   : Aggregation matrix. 

The elements in D belong to the set 0, 1 . An additional 

requirement is that 1a p . This requirement is satisfied if 

the column sums of D are 1 for each column. 

The function states of the aggregated model can formally be 

defined by 

a  ξ D ξ                (20) 

where 

 
aξ  : Function state vector for the aggregated model 

ξ   : Function state vector for the composite model 

D : The aggregation matrix interpreted as a logical 

  matrix 

   : The logical or operator. 

The aggregated transition rate matrix is formally defined by 

   , ,a A A p A D               (21) 

where 

Aa  : Transition rate matrix for the aggregated system 

A   : Transition rate matrix for the composite system 

D   : The aggregation matrix 

 p   : Probability vector for the composite model. 

The function  A  is a matrix function performing the 

aggregation. 

A compact formulation of the aggregation functions 

comprising equation (19), (20) and (21) is 

    , , , , ,a a a a ξ p A ξ p A D            (22) 

Note that the aggregated probability variables ( aA , ap ) 

satisfies the Markov model. Therefore also the residence time 

and departure frequency vectors can be calculated for the 

aggregated model by relation (7) and (8). 
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IV. POWER DEMAND MODEL 

The demand of supply can be deterministic or stochastic. In 

case of stochastic demand a vector of demand levels Dξ  and a 

belonging probability vector can be used. The probability 

model can be a unit Markov model given by: 

  
D D Dp A p

                 (23)
 

where 

pD : Probability for the different demand levels 
Dξ  

 AD : Transition rate matrix. 

To avoid complex models the number of levels has to be kept 

as low as possible.  

A composite probability vector including the network and 

the demand probabilities can be calculated in accordance with 

the principles used in the previous section. 

V. RELIABILITY MODELS FOR THE POWER TRANSMISSION 

NETWORK 

A. Model structure 

Failure in the transmission network can be described by: 

 Branch failures 

 Delivery failures. 

Branch failures comprise all failures that reduce the ability of a 

branch to operate at maximum capacity. Failure in a branch 

may be caused by failure in one or more components that 

constitute the branch function.  

Delivery failure represents shortage in the ability to deliver 

the demanded power. Owing to redundancy, a branch failure 

may not cause a delivery failure. 

A function state vector can be used to describe the operating 

condition of each system function or component. The simplest 

possible function state vector for a component has the two 

following states: 

 Functioning 

 Failed. 

The function state for the complete network is a result of the 

component function states, the network system structure, the 

network capacity and demand. To obtain all function states for 

a network, all combinations of component states must be 

evaluated. The dimension of the network function state vector 

is therefore growing very fast with the number of components. 

By using several function levels it is possible to partly 

overcome this problem. Typical function levels are: 

 The unit model level 

 The branch level 

 The demand level 

 The network level. 

Power supply shortage is associated with the branch level. 

Probability models concerning these levels are discussed in the 

following paragraphs. 

B. Unit component models 

The probability for staying in a function state for a component 

in the network can be described by unit models. The overall 

network probability can then be obtained by combining the 

results from each unit model. The unit models are 

characterized by: 

 A function state vector that describes the function 

states. 

 A probability vector that describes the probability for 

staying in the different function states 

 A model of the Markov type that describes the relation 

for calculation of the probability vector. 

Typical unit models for a branch in an electrical grid is: 

 Power lines or transformers 

 Protection functions 

 Automatic re-closing 

 Common power supply 

 Demand 

 Environment impacts like whether or lightning. 

The probability for the different unit model function states 

,c ijξ  is based on the Markov models defined by: 

  , , ,c ij c ij c ijp A p                (24) 

where 

,c ijξ
 

: Function state vectors  

 ,c ijp
    

: Probability vectors  

,c ijA  : Transition rate matrices.  

ij  : Index for unit model no. j in branch no. i. 

All these models should have a low dimension.  

C. Branch models 

The branch probability variables are obtained by assembling 

the unit models into composite models. The result based on the 

composite function (18) is: 

 , , , , , , , 1
, , , , ,

i
b i b i b i b i c ij c ij c ij j  

    ξ p A ξ p A     (25) 

where  

,b i
  

: Function state vector for branch no. i 

,b i  : Function state index matrix for branch no. i 

,b ip
       

: Probability vector for branch no i 

,b iA  : Transition rate matrix for branch no i. 

i   : Number of unit models in branch no. i. 

Aggregation of these composite probability variables based 

on the aggregation function (22) gives 

 , , , , , , ,, , , , ,ba i ba i ba i b i b i b i a i
    ξ p A ξ p A D       (26) 

where 

 ,ba iξ   : Aggregated function state vector for branch no. i 

 ,ba ip   : Aggregated probability vector for branch no. i 

,ba iA  : Aggregated transition rate matrix for branch no. i 

,b iD   : Aggregation matrix for branch no. i 

The aggregated branch variables ( ,ba iA , ,ba ip ) satisfy the 

Markov model. Therefore, also the residence time vector 

,b iθ and the departure frequency vector ,b iν for the branches 

can be calculated according to equation (7) and (8). 

Several levels of aggregation can be used to evaluate the 

branch probability. For evaluation of the network functionality 

the following branch function states ,ba iξ are used: 
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 The branch is functioning 

 The branch is failed. 

Based on these function states the network reliability models 

can be composed. 

D. Network models 

In this case the purpose is to analyze the probability for a 

failure in the network. The function states for the network are 

obtained by combination of all states in the aggregated branch 

models. The result based on the composite function (18) is: 

   , , , 1
, , , , ,n n n n ba i ba i ba i i  
 ξ p A ξ p A       (27) 

where  

n   
: Function state vector  

n   : Function state index matrix 

np
       

: Probability vector 

nA   : The transition rate matrix  

   : Number of branches. 

The function states are then separated in functioning states and 

failure states and a belonging aggregation matrix is generated. 

The resulting aggregated model according to the aggregation 

function (22) is 

   , , , , ,na na na n n n n ξ p A ξ p A D           (28) 

where 

naξ   : Function state vector  

nap   : Probability vector 

naA   : Transition rate matrix. 

nD   : Aggregation matrix 

Also the probability variables (
naA ,

nap ) satisfy the Markov 

model. The residence time vector 
naθ and the departure 

frequency vector naν for the network can therefore be 

calculated according to equation (7) and (8). 

E. Power supply reliability  

In this case the purpose is to analyze the power delivery 

shortage. The analysis is based on the network function states 

obtained by all possible combinations of the branch function 

states {Functioning, Failed}. In the case of stochastic demand 

these states are also combined with the network states.  

 The power delivery shortage is calculated by running the 

power flow model with the branch conditions defined by the 

network states. In case of fictive power delivery, a power 

supply shortage has occurred. The network probability 

variables are calculated by the composite function (18). The 

result is contained in the following set of variables 

, , ,np np np np
  ξ A p P               (29) 

where 

npξ   : Function state vector 

npA  : Transition rate matrix 

npp   : The probability vector 

npP   : Power supply shortage matrix. 

The power supply shortage matrix has one column for each 

load node.  

The expected power supply shortage is defined by 

ˆ
np np np P P p                     (30) 

where 

 ˆ
npP   : Expected power supply shortage matrix 

   : Operator for row elements by vector element 

    multiplication. 

Expected power supply shortage for each node is further 

calculated by 

 ˆ ˆ
npc C np P P                 (31) 

where 

ˆ
npcP  : Line vector containing expected power shortage 

  for each node. 

C  : Column sum operator. 

The total expected power supply shortage is 

 ˆ ˆ
npt R npcP   P                 (32) 

where 

ˆ
nptP  : Total expected power shortage  

R  : Row sum operator. 

The function state vector npξ  can be separated into the sets 

{No power supply shortage, Power supply shortage} Based on 

these sets an aggregation matrix can be generated. The 

aggregated probability variables are then calculated according 

to the aggregation function (22). The result is 

 , , , , ,npa npa npa np np np np
    ξ p A ξ p A D        (33) 

where 

npaξ   : Aggregated function state vector 

npap   : Aggregated probability vector 

npaA  : Aggregated transition rate matrix 

npaD  : Aggregation matrix. 

Again the residence time vector npaθ  and the departure 

frequency vector npaν can be calculated from npaA  according 

to equation (7) and (8). 

VI. ECONOMIC MODEL 

The economic consequence of a power supply shortage is 

ˆ
ns ns nptv c P                   (34) 

where 

nsv  : Cost flow for power not supplied [NOK/year] 

nsc  : Specific cost for power not supplied [NOK/kW year] 

ˆ
nptP  : Total power supply shortage [kW]. 

In a life cycle analysis the following economic balance 

equation can be used 
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 

, ,

0 0

in i out iV rV v v

V

  



 
            (35) 

where  

V   : Accumulated capital [NOK] 

V(0)  : Start value 

,in iv   : Economic in-flow variables [NOK/year] 

,out iv   : Economic out-flow variables [NOK/year] 

r    : Continuous rate of interest [1/year]. 

The cost flow for power not supplied 
nsv is a part of the 

economic out-flows. For analysis of reliability consequences, 

equation (35) can be simplified by removing all flows not 

dependent on the reliability. This equation together with the 

probability model can be used for long-term operation and 

investment optimization. 

VII. IMPLEMENTATION 

The theory is preliminary implemented in a MATLAB 

program and tested for the network shown in figure 1. The 

input data is organized in the following groups: 

 Unit models reliability data 

 Network data 

 Economic data. 

A lot of reliability calculations concerning unit models, branch 

models and network models are available. Typical variables 

are: 

 Probability for the different function states 

 Residence time for the different function states 

 Departure frequency for the different function states 

 Expected power shortage 

 Expected power shortage cost.  

At the moment the reliability calculations are based on the 

exponential distribution. However, other distributions as the 

Weibull distribution seem to be easy to implement in the unit 

models. Both stationary and dynamic analysis can be 

performed. A special function is used to identify the transition 

rate matrix for demand models based on recorded data. 

VIII. RESULTS 

The calculations are very fast and give a good insight in the 

network reliability. Here, only the expected cost of energy not 

served as a function of demand is shown in figure 2. The 

specific cost of energy not served is 39.84 [NOK/kW h] or 

348998[NOK/kW year] 

The curve “Non selective disconnection” represents the case 

in which the network breaks down when the demand is greater 

than the delivery capacity.  

 

 
 
Fig. 2. Expected cost of energy not served 

IX. CONCLUSION 

The method seems to be very efficient especially for large 

systems. The unit model based method together with the model 

composition and aggregation may lead to an extreme reduction 

in manual work and calculation time. Extension of the 

practical dimension limits for Markov models from about 100 

to almost infinite is possible. In the power grid described in 

this paper the dimension for a complete conventional Markov 

model is near 6*10
6
, a dimension that is completely 

unpractical. The method described in this paper uses 17 small 

models easy to establish and require just a few seconds of 

calculation time. Problems regarding modeling of common 

mode failure and failures caused by the surroundings are 

almost absent. Yet, no comparisons with other methods have 

been investigated. Comparisons with conventional Markov 

models are not relevant. However, comparison with Monte 

Carlo methods should be of interest. 
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